Loading...

Minggu, 22 Mei 2011

PENGERTIAN DARI KONDUKSI,KONVEKSI DAN RADIASI

 MENGUNDUH DARI INTERNET
Radiasi,Konveksi dan Konduksi
Radiasi biasanya berarti transmisi gelombang, objek atau informasi dari sebuah sumber ke medium atau tujuan sekitarnya.
Dalam fisika, konsep yang berhubungan adalah:
  1. radiasi ionisasi adalah sebuah semburan partikel (seperti photon) dengan energi yang berkecukupan untuk menyebabkan ionisasi atom atau molekul.
  2. radiasi non-ionisasi seperti di atas hanya tidak memiliki cukup energi.
  3. radiasi elektromagnetik: cahaya adalah salah satu bentuknya yang tampak mata; radiasi thermal adalah bentuk panas. Keseluruhan, jangkauan panjang gelombang mencakup gelombang Frekuensi sangat rendah dengan panjang dalam km, radio AM, radio FM, TV dan gelombang mikro, inframerah (panas) gelombang, cahaya tampak, ultraungu, sinar-X, dan sinar gamma.
  4. radiasi gravitasi
  5. radiasi partikel adalah sebuah bentuk radiasi dimana unsur individual bersikap seperti partikel, contohnya radiasi neutron cepat atau lambat
  6. radiasi Cherenkov adalah pemancaran radiasi elektromagnetik oleh partikel bermuatan bergerak melalui sebuah medium terinsulasi lebih cepat dari kecepatan cahaya dalam medium tersebut.
  7. radiasi synchotron dipancarkan oleh partikel bermuatan yang dipercepat dalam medan magnet dan bergerak mendekati kecepatan cahaya. Ini terjadi, contohnya, bila partikel bergerak dalam lingkaran, seperti dalam synchrotron.
Dalam Biologi, radiasi adaptive adalah sebuah proses dalam biologi evolusi dimana satu spesies menjadi banyak dalam rangka beradaptasi ke niche ekologi tertentu.
Radiasi kadangkala juga digunakan, tidak tepat, untuk menunjuk ke kontaminasi radioaktif, pembebasan isotop radioaktif ke lingkungan. Isotop tersebut kemudian melepaskan radiasi terionisasi, yang dapat membuat parah apabila isotop tersebut diserap oleh tumbuhan, hewan atau manusia, karena isotop kemudian melepas radiasi terionisasi dari dalam organisme
Konduksi adalah perpindahan panas antara dua sustansi dari sustansi yang bersuhu tinggi, panas berpindah ke sustansi yang bersuhu rendah dengan adanya kontak kedua sustansi secara langsung.
Misalnya ketika tangan kamu memegang gelas panas, maka telapak tangan kamu akan menerima panas dari gelas tersebut.
Konveksi.
Konveksi terjadi diakibatkan adanya ekspansi termal dan konduksi. Konveksi sendiri artinya= cairan yang berpindah akibat adanya perbedaan suhu.
Expansi termal adalah sifat dari sustansi yang bertemperatur tinggi dimana partikel-partikel sustansi tersebut volumennya meluas/membesar akibat panas.
Maka akibatnya berat jenis partikel itu berkurang. Karena berkurangnya berat jenis partikel, maka partikel itu akan terdorong ke atas (dalam hal ini udara panas) , sedangkan udara dingin yang ada di atasnya akan turun menggantikannya. Ingat misalnya berat jenis es lebih kecil daripada berat jenis air, maka es akan mengapung di air. berat jenis besi yang lebih besar daripada air menyebabkan besi tenggelam di air.
Nah sekarang bagaimana proses keluarnya panas (yang berasal dari radiasi solar) dari bumi?
Pertama-tama radiasi solar berhasil diserap oleh bumi dan menjadi enerji panas. Panas di permukaan bumi menyebabkan panasnya udara di permukaan oleh proses konduksi. Dari sinilah proses konveksi dimulai. Udara yang sudah dipanaskan oleh permukaan bumi kemudian naik ke permukaan karena konveksi, hingga menggantikan udara dingin yang berada di atasnya. Udara dingin yang tadinya berada di atas, terdorong ke bawah oleh hawa panas tadi.
Karena proses konveksilah jumlah panas yang berhasil dipindahkan bumi ke angkasa lebih tinggi dibandingkan jika hanya terjadi proses konduksi saja. Uap air panas yang naik, mentransfer energi panas itu ke sekelilingnya dan selanjutnya akan berpindah ke bawah lagi.
Latent Heat
Seiring dengan proses konveksi, terjadi pula evaporasi/penguapan uap air yang juga mendinginkan permukaan bumi (lihat artikel “Keringat mendinginkan tubuh”).
Kata Latent menegaskan bahwa panas tidak menyebabkan perubahan temperatur, melainkan menyebabkan perubahan keadaan.
Dalam hal ini panas yang ada di permukaan bumi juga berarti panas yang ada di permukaan lautan, danau, sungai, kelembapan tanah, vegetasi, yang menyebabkan air di permukaan bumi menguap (evaporasi) menjadi uap air yang naik ke atmosfir dalam proses konveksi.
Ingat kan? bahwa dalam proses evaporasi diperlukan panas/enerji- guna merubah keadaan tadi, dalam proses inilah lagi-lagi bumi kita kehilangan energi panasnya, dengan cara evaporasi.
Ketika uap air ini naik, di ketinggian temperaturnya akan menurun. Ketika temperatur turun cukup rendah hingga menyebabkan uap air berkondensasi di atmosfir, menjadi butiran-butiran cairan atau partikel-partikel es – awan.
Kalau enerji diperlukan dalam proses penguapan yang merubah cairan atau solid menjadi uap air, maka enerji juga diperlukan ketika uap air berubah menjadi cairan atau solid (kondensasi).
Latent heat yang disebabkan oleh proses kondensasi, akhirnya memanaskan atmosfir .
Proses penguapan dan kondensasi air jelas memindahkan panas dari permukaan bumi ke atmosfir. Selanjutnya presipitasi mengembalikan air yang berkondensasi ke bumi dalam bentuk hujan atau salju di mana selanjutnya air ini bisa mengalami proses evaporasi dan kondensasi kembali.
Spektrum elektomagnetik
Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan (lihat juga tabel dan awalan SI):
Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz  Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1μeV/GHz  Panjang gelombang dikalikan dengan energy per foton adalah 1.24 μeVm
Spektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi. Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (λ ≥ 0,5 mm). Istilah “spektrum optik” juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 – 700 nm)
Frekuensi Radio
Frekuensi radio menunjuk ke spektrum elektromagnetik di mana gelombang elektromagnetik dapat dihasilkan oleh pemberian arus bolak-balik ke sebuah antena. Frekuensi seperti ini termasuk bagian dari spektrum di bawah ini:
Nama band Singkatan band ITU Frekuensi Panjang gelombang



< 3 Hz > 100,000 km
Extremely low frequency ELF 1 3-30 Hz 100,000 km – 10,000 km
Super low frequency SLF 2 30-300 Hz 10,000 km – 1000 km
Ultra low frequency ULF 3 300-3000 Hz 1000 km – 100 km
Very low frequency VLF 4 3-30 kHz 100 km – 10 km
Low frequency LF 5 30-300 kHz 10 km – 1 km
Medium frequency MF 6 300-3000 kHz 1 km – 100 m
High frequency HF 7 3-30 MHz 100 m – 10 m
Very high frequency VHF 8 30-300 MHz 10 m – 1 m
Ultra high frequency UHF 9 300-3000 MHz 1 m – 100 mm
Super high frequency SHF 10 3-30 GHz 100 mm – 10 mm
Extremely high frequency EHF 11 30-300 GHz 10 mm – 1 mm



Di atas 300 GHz < 1 mm
Catatan: di atas 300 GHz, penyerapan radiasi elektromagnetik oleh atmosfer Bumi begitu besar sehingga atmosfer secara efektif menjadi “opak” ke frekuensi lebih tinggi dari radiasi elektromagnetik, sampai atmosfer menjadi transparan lagi pada yang disebut jangka frekuensi infrared dan jendela optikal.
Band ELF, SLF, ULF, dan VLF bertumpuk dengan spektrum AF, sekitar 20-20,000 Hz. Namun, suara disalurkan oleh kompresi atmosferik dan pengembangan, dan bukan oleh energi elektromagnetik.
Penghubung listrik didesain untuk bekerja pada frekuensi radio yang dikenal sebagai Penghubung RF. RF juga merupakan nama dari penghubung audio/video standar, yang juga disebut BNC (Bayonet Neill-Concelman).
Gelombang mikro
Gelombang mikro (microwave) adalah gelombang elektromagnetik dengan frekuensi super tinggi (Super High Frequency, SHF), yaitu diatas 3 GHz (3×109 Hz).
Jika gelombang mikro diserap oleh sebuah benda, akan muncul efek pemanasan pada benda tersebut. Jika makanan menyerap radiasi gelombang mikro, makanan menjadi panas dan masak dalam waktu singkat. Proses inilah yang dimanfaatkan dalam oven microwave.
Gelombang mikro juga dimanfaatkan pada RADAR (Radio Detection and Ranging). RADAR digunakan untuk mencari dan menentukan jejak suatu benda dengan gelombang mikro dengan frekuensi sekitar 1010 Hz
Inframerah
Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti “bawah merah” (dari bahasa Latin infra, “bawah”), merah merupakan warna dari cahaya tampak dengan gelombang terpanjang. Radiasi inframerah memiliki jangkauan tiga “order” dan memiliki panjang gelombang antara 700 nm dan 1 mm.
Spektrum optik
Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm. Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah kuning dari spektrum optik.
Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi sebagian besar tanpa dikurangi (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan mengapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer.
Cahaya putih dipencarkan oleh sebuah prisma menjadi warna-warna dalam spektrum optik.

Warna-warna di dalam spektrum

Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :
ungu 380-450 nm
biru 450-495 nm
hijau 495-570 nm
kuning 570-590 nm
jingga 590-620 nm
merah 620-750 nm
Ultraungu(Ultra violet)
Radiasi ultraungu (sering disingkat UV, dari bahasa Inggris: ultraviolet) adalah radiasi elektromagnetis terhadap panjang gelombang yang lebih pendek dari daerah dengan sinar tampak, namun lebih panjang dari sinar-X yang kecil.
Radiasi UV dapat dibagi menjadi hampir UV (panjang gelombang: 380-200 nm) dan UV vakum (200-10 nm). Ketika mempertimbangkan pengaruh radiasi UV terhadap kesehatan manusia dan lingkungan, jarak panjang gelombang sering dibagi lagi kepada UVA (380-315 nm), yang juga disebut “Gelombang Panjang” atau “blacklight“; UVB (315-280 nm), yang juga disebut “Gelombang Medium” (Medium Wave); dan UVC (280-10 nm), juga disebut “Gelombang Pendek” (Short Wave).
Istilah ultraviolet berarti “melebihi ungu” (dari bahasa Latin ultra, “melebihi”), sedangkan kata ungu merupakan warna panjang gelombang paling pendek dari cahaya dari sinar tampak. Beberapa hewan, termasuk burung, reptil, dan serangga seperti lebah dapat melihat hingga mencapai “hampir UV”. Banyak buah-buahan, bunga dan benih terlihat lebih jelas di latar belakang dalam panjang gelombang UV dibandingkan dengan penglihatan warna manusia.
Sinar-X
Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 picometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medikal dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya
Sinar gamma
Sinar gamma (seringkali dinotasikan dengan huruf Yunani gamma, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.
Sinar gamma membentuk spektrum elektromagnetik energi-tertinggi. Mereka seringkali didefinisikan bermulai dari energi 10 keV/ 2,42 EHz/ 124 pm, meskipun radiasi elektro magnetik dari sekitar 10 keV sampai beberapa ratus keV juga dapat menunjuk kepada sinar X keras. Penting untuk diingat bahwa tidak ada perbedaan fisikal antara sinar gamma dan sinar X dari energi yang sama — mereka adalah dua nama untuk radiasi elektro magnetik yang sama, sama seperti sinar matahari dan sinar bulan adalah dua nama untuk cahaya tampak. Namun, gamma dibedakan dengan sinar X oleh asal mereka. Sinar gamma adalah istilah untuk radiasi elektromagnetik energi-tinggi yang diproduksi oleh transisi energi karena percepatan elektron. Karena beberapa transisi elektron memungkin kan untuk memiliki energi lebih tinggi dari beberapa transisi nuklir, ada penindihan antara  apa yang kita sebut sinar gamma energi rendah dan sinar-X energi tinggi.
Sinar gamma merupakan sebuah bentuk radiasi mengionisasi; mereka lebih menembus dari radiasi alpha atau beta (keduanya bukan radiasi elektromagnetik), tapi kurang mengionisasi.
Perlindungan untuk sinar γ membutuhkan banyak massa. Bahan yang digunakan untuk perisai harus diperhitungkan bahwa sinar gamma diserap lebih banyak oleh bahan dengan nomor atom tinggi dan kepadatan tinggi. Juga, semakin tinggi energi sinar gamma, makin tebal perisai yang dibutuhkan. Bahan untuk menahan sinar gamma biasanya di ilustrasi kan  dengan ketebalan yang dibutuhkan untuk mengurangi intensitas dari sinar gamma setengahnya. Misalnya, sinar gamma yang membutuhkan 1 cm (0,4 inchi) “lead” untuk mengurangi intensitasnya sebesar 50% jujga akan mengurangi setengah intensitasnya dengan konkrit 6 cm (2,4 inchi) atau debut paketan 9 cm (3,6 inchi).
Sinar gamma dari fallout nuklir kemungkinan akan menyebabkan jumlah kematian terbesar dalam penggunaan senjata nuklir dalam sebuah perang nuklir. Sebuah perlindungan fallout yang efektif akan mengurangi terkenanya manusia 1000 kali.
Sinar gamma memang kurang mengionisasi dari sinar alpha atau beta. Namun, mengurangi bahaya terhadap manusia membutuhkan perlindungan yang lebih tebal. Mereka menghasilkan kerusakan yang mirip dengan yang disebabkan oleh sinar-X, seperti terbakar, kanker, dan mutasi genetika. Dalam hal ionisasi, radiasi gamma berinteraksi dengan bahan melalui tiga proses utama: efek fotoelektrik, penyebaran Compton, dan produksi pasangan.

Tidak ada komentar:

Poskan Komentar